Potential of an Ambient Air for Energy Saving Technologies through the Maisotsenko Cycle

Takahiko MIYAZAKI^{1,2,*}, Valeriy S. MAISOTSENKO³

¹ Faculty of Engineering Sciences, Kyushu University

² International Institute for Carbon-Neutral Energy Research, Kyushu University

³ Seeley International Americas, Coolerado

31th January, 2018

Evaporative Cooling

The Maisotsenko Cycle (M-Cycle)

Applications of the M-Cycle Technology

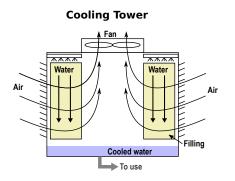
Remarks

Evaporative Cooling

Evaporative Cooling

Mist Coolers

Pot-in-pot

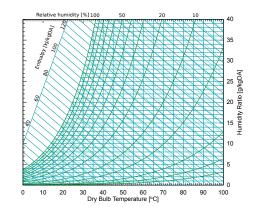


Uchimizu

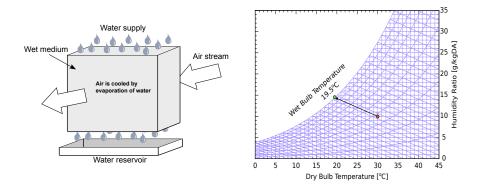
Evaporation of 1g of water uses about 2.5 kJ of heat

 \Rightarrow Water evaporation of 1 g can cool 100 g of water by 6 K.

Psychrometrics

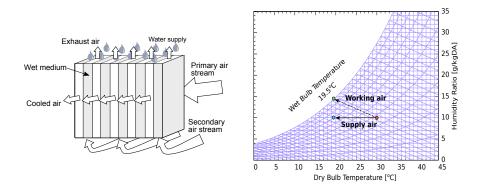

- ► The atmosphere contains 1-3 weight % of water vapor
- The constitution of dry air is almost constant up to 80km in altitude

Terminology

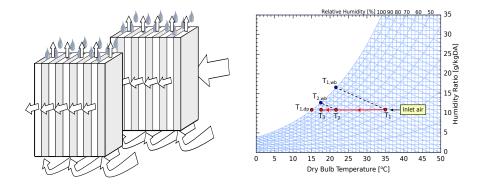

Dry air:

Air with neither water vapor nor any contaminants

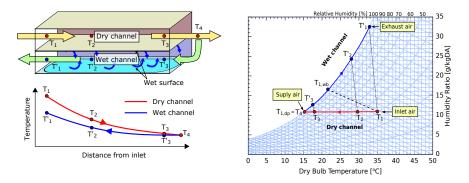
Wet air: Dry air + water vapor



Direct Evaporative Coolers


- Direct contact of air and water.
- Humidity ratio of the air increases.
- Cooling limit is defined by the wet-bulb temperature.

Indirect Evaporative Coolers


- Different air path for supply air and working air.
- Humidity ratio of the supply air does not increase.
- Cooling limit is defined by the wet-bulb temperature.

A Multistage Evaporative Cooler

- The cooled air from an indirect evaporative cooler is further cooled by the secondary indirect evaporative cooler.
- The air temperature theoretically reaches the dew point of the inlet air by infinite stages of cooling.

The M-Cycle Evaporative Cooler

- Consists of of Dry Channel and Wet Channel, and a part of air flow through the dry channel enters the wet channel.
- The humidity ratio in the dry channel does not change, while it increases up to the saturation humidity in the wet channel.
- Theoretically, the inlet air can be cooled to dew point temperature at the exit of the dry channel.

The Maisotsenko Cycle (M-Cycle)

Prof. Dr. Valeriy S. Maisotsenko

Professor Emeritus,

Chief Scientist, Seeley International Americas, Coolerado

The M-Cycle is a thermodynamic concept invented by Prof. V.S. Maisotsenko.

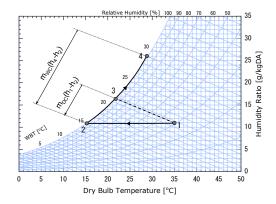
I²CNER Seminar Series, 24th, June, 2015

https://www.youtube.com/watch?v=uWMK7ytqmnE

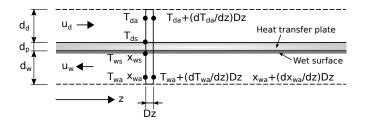
Performance of the M-Cycle

Enthalpy balance and temperature effectiveness

Enthalpy balance

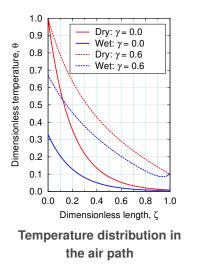

 $\dot{m}_{\rm DC} (h_1 - h_2) = \dot{m}_{\rm WC} (h_4 - h_2)$

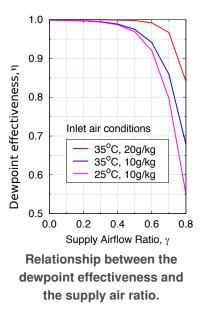
Supply air ratio


$$\gamma = \frac{\dot{m}_{\rm DC} - \dot{m}_{\rm WC}}{\dot{m}_{\rm DC}} = \frac{h_4 - h_1}{h_4 - h_2}$$

Dewpoint effectiveness

$$\eta = \frac{T_1 - T_2}{T_1 - T_{dp}}$$


Simulation Model

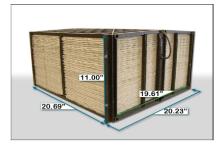


Dry channel
$$\frac{dT_{da}}{d\zeta} = \frac{Nu_d}{Re_d Pr} A_d (T_{ds} - T_{da})$$

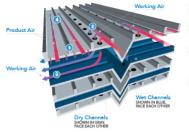
Wet channel
$$\frac{dT_{wa}}{d\zeta} = \frac{Nu_w}{Re_w Pr} A_w (T_{wa} - T_{ws})$$
$$\frac{dx_{wa}}{d\zeta} = -\frac{Sh}{Re_w Sc} A_w (x_{ws} - x_{wa})$$

 $(\zeta = z/L, A = L/d)$

Characteristics of the M-Cycle



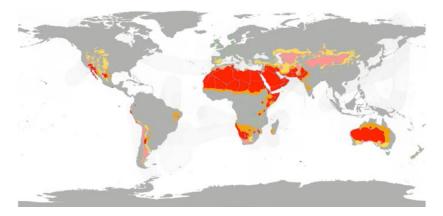
Commercialized Products


by Coolerado Corp., US

M-Cycle Heat and Mass Exchanger

A lot of problems are already overcome.

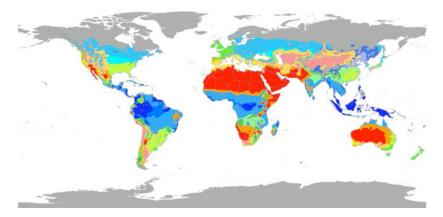
- Pressure drop
- Durability
- Hygiene


- Product air and working air enter the dry side of the HMX.
- Cooled working air is fractioned off into wet channels throughout the exchanger.
- Heat from the product air is transferred into the working air through evaporation and is rejected as exhaust.
- O The product air travels the length of the dry channels, while transferring its heat to the working air in the wet channels above and below. As a result, the product air cools down and remains dry as it enters the building.

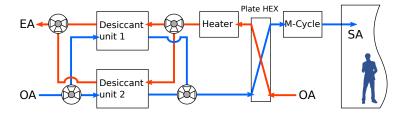
Ref: Coolerado web site, http://www.coolerado.com

Applications of the M-Cycle Technology

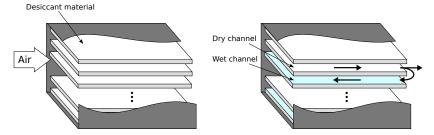
Possibility of the M-Cycle Application


Effective in dry region (7-10% of world population)

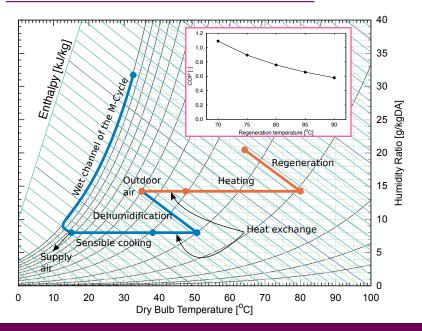
Ref.: Buyadgie et al., 14th International Conference on Sustainable Energy Technologies (SET2015), 25-26 Aug. 2015


Possibility of the M-Cycle Application

Covers 90% of world population with dehumidification

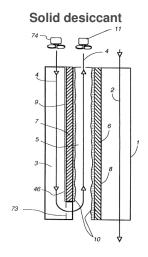

Ref.: Buyadgie et al., 14th International Conference on Sustainable Energy Technologies (SET2015), 25-26 Aug. 2015

Desiccant Air Conditioning with the M-Cycle

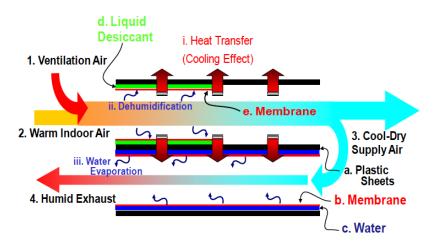


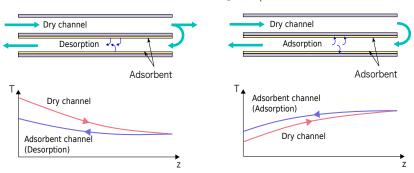
Desiccant unit

M-cycle evaporative cooler


Desiccant Air Conditioning Process

Concept of a new M-Cycle with Desiccant


Combined M-Cycle and Desiccant


US Patent No. 6,497,107

Research in NREL, USA

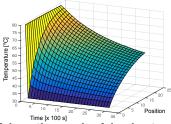
Kozubal et al., Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning, NREL

M-Cycle with Adsorbent Channel

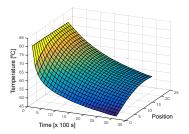
1 Desorption mode

Miyazaki and Koyama, National Heat Transfer Symposium of Japan, 2015

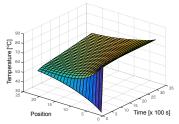
2 Adsorption mode

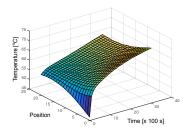

Boundary conditions

Mode	Initialization	Adsorption	Desorption
Time	3000s	3000s	3000s
Flow	Parallel	Conter	Counter
Inlet Air	80°C, 19g/kg	32°C, 19g/kg	80°C, 19g/kg

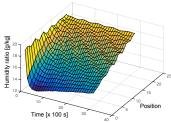


Temperature Profiles

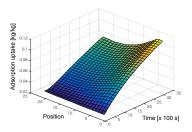



Adsorption mode: Adsorbent channel

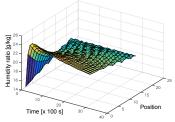
Desorption mode: Dry channel

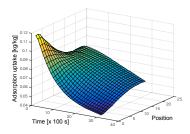


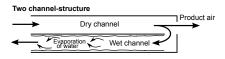
Desorption mode: Adsorbent channel



Moisture Change in Adsorbent Channeol


Humidity ratio (Adsorption mode)


Adsorption uptake (Adsorption mode)


Humidity ratio (Desorption mode)

Adsorption uptake (Desorption mode)

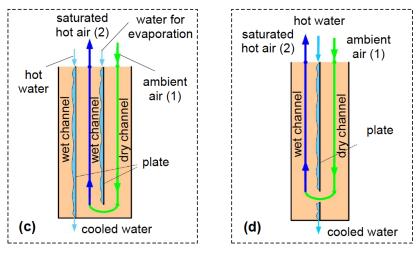
M-Cycle with three air path

Three channel-structure

Dry channel

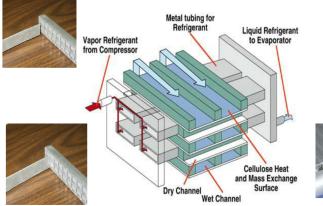
Evaporation
Vet channel

Product air


Product channel

Any fluid can be cooled!

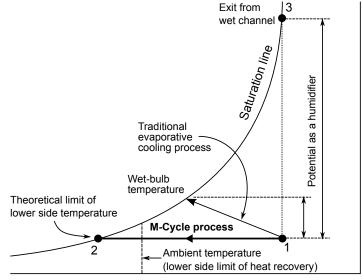
Expanded the application field.


- Cooling tower
- Condenser
- Waste heat recovery

M-Cycle Cooling Tower

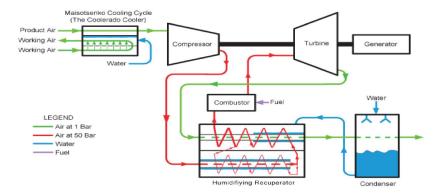
Reproduced from: Khalatov et al., Int J Energy Clean Environ 2011;12:141-57

M-Cycle Condenser



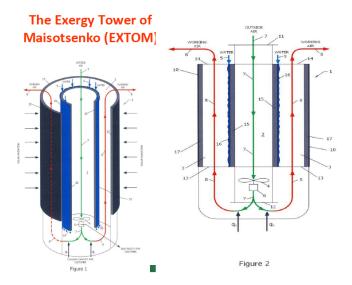
Reproduced from: Gillan et al., Int J Energy Clean Environ 2011;12:251-258

Potential of Heat and Mass Exchanger



Dry-bulb temperature

Humidity ratio


Improvement of Gas Turbine Efficiency

Cooling of inlet air and addition of water vapor

from Prof. Maisotsenko presentation slide

Power Generation by Density Difference

from Prof. Maisotsenko presentation slide

- Maisotsenko Cycle is a new thermodynamic concept and it is realized as a air cooler in the USA.
- To use it in Japan (humid climate), combination with desiccant system (dehumidification) is necessary.
- There are a lot of possibilities in application of the M-Cycle to other fields, such as cooling towers, condensers, and power cycles.

Thank you for your kind attention!

