1. D. Huang, Y. Nakamura, A. Ogata, S. Kidoaki*, Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels, Polymer J. , ,in press 2019. DL Link
  2. S. Kidoaki*, Frustrated differentiation of mesenchymal stem cells, Biophys. Rev. , 11, 377-382, 2019. DL Link
  3. M. Iwashita, H. Ohta, T. Fujisawa, M. Cho, M. Ikeya, S. Kidoaki and Y. Kosodo*, Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells, Sci. Rep. , 9, 3068, 2019. DL Link
  4. K. Moriyama and S. Kidoaki*, Cellular durotaxis revisited: Initial-position-dependent determination of the threshold stiffness gradient to induce durotaxis, Langmuir. , ,10.1021/acs.langmuir.8b02529, 2018. DL Link
  5. H. Ebata*, A. Yamamoto, Y. Tsuji, S. Sasaki, K. Moriyama, T. Kuboki, S. Kidoaki*, Persistent random deformation model of cells crawling on a gel surface, Sci. Rep. , 8, 5153, 2018. DL Link
  6. N. Shimada, M. Saito, S. Shukuri, S. Kuroyanagi, T. Kuboki, S. Kidoaki, T. Nagai, A. Maruyama*, Reversible monolayer/spheroid cell culture switching by UCST-type thermoresponsive ureido polymers, ACS Applied Mater. Interf. , 8, 31524-31529, 2016. DL Link
  7. T. Kuboki and S. Kidoaki*, Fabrication of elasticity-tunable gelatinous gel for mesenchymal stem cell culture, Methods Mol. Biol. , 1416, 425-441, 2016. DL Link
  8. F. Kantawong*, T. Kuboki*, and S. Kidoaki, Redox gene expression of adipose-derived stem cells in response to soft hydrogel, Turk. J. Biol. , 39, 682-691, 2015.DL Link
  9. A. Ueki and S. Kidoaki*, Manipulation of cell mechanotaxis by designing curvature of the elasticity boundary on hydrogel matrix, Biomaterials, 41, 45-52, 2015.DL Link
  10. T. Kuboki, W. Chen*, S. Kidoaki*, Time-dependent migratory behaviors in the long-term studies of fibroblast durotaxis on a hydrogel substrate fabricated with a soft band, Langmuir, 30, 6187-6196, 2014. DL Link
  11. S. Shimada, S. Kidoaki, A. Maruyama*, Smart hydrogels exhibiting UCST-type volume changes under physiologically relevant conditions, RSC adv., 4, 52346-52348, 2014. DL Link
  12. S. Kidoaki*, H. Sakashita, Rectified cell migration on saw-like micro-elastically patterned hydrogels with asymmetric gradient ratchet teeth, PLOS One, 8(10), e78067, 2013. DL Link
  13. H. Yoshikawa, T. Kawano, T. Matsuda, S. Kidoaki*, M. Tanaka*, Morphology and adhesion strength of myoblast cells on photocurable gelatin under native and non-native micromechanical environments, J. Phys. Chem. Part B, 117, 4081-4088, 2013. DL Link
  14. T. Kawano and S. Kidoaki*, Corrigendum to “Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels” [Biomaterials 32 (2011)2725-33], Biomaterials , 35, 7563-7564, 2013. DL Link
  15. T. Kuboki, F. Kantawong, R. Burchmore, M.J. Dalby, S. Kidoaki*, 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels, Cell Structure and Function , 37, 127-139, 2012. DL Link
  16. M. Horning, S. Kidoaki, T. Kawano, K. Yoshikawa*, Rigidity-matching between cells and the extracellular matrix leads to the stabilization of cardiac conduction, Biophys. J. , 102, 379-387, 2012. DL Link
  17. T. Kawano and S. Kidoaki*, Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels, Biomaterials , 32, 2725-2733, 2011.DL Link
  18. S. Kidoaki*, Mechanics in cell adhesion and motility on the elastic substrates, J. Biomech. Sci. Eng., 5, 218-228, 2010.
  19. S. Kidoaki* and T. Matsuda, Vectorial control of cell movement by the design of microelasticity distribution of biomaterial surface, Proceedings of IEEE International Symposium on Micro-NanoMechatronics and Human Science., 5, 469-474, 2008.
  20. S. Kidoaki* and T. Matsuda, Microelastic gradient gelatinous gels to induce cellular mechanotaxis, J. Biotechnol., 133, 225-230, 2008. DL Link
  21. S. Kidoaki and T. Matsuda*, Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features, J. Biomed. Mater. Res. A, 81, 803-810, 2007. DL Link
  22. S. Kidoaki and T. Matsuda*, Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy, J. Biomed. Mater. Res. A, 81, 728-735, 2007. DL Link
  23. S. Kidoaki* and T. Matsuda, Characterization of the cellular biomechanical responses caused on microprocessed substrates: effect of micropatterned cell adhesiveness and microelasticity gradient, Proceedings of IEEE International Symposium on Micro-NanoMechatronics and Human Science., 5, 63-69, 2006.
  24. S. Kidoaki*, T. Matsuda, and K. Yoshikawa, Relationship between apical membrane elasticity and stress fiber organization in fibroblasts analyzed by fluorescence and atomic force microscopy, Biomechan Model Mechanobiol, 5, 263-272., 2006.
  25. T. Matsuda* and S. Kidoaki, Mechanobiology of cell and tissue engineering and multi-scaled process engineering, Proceedings of IEEE International Symposium on Micro-NanoMechatronics and Human Science., 5, 203-205, 2005.
  26. S. Ohya, S. Kidoaki, and T. Matsuda*, Poly(N-isopropylacrylamide) (PNIPAAM)-grafted hydrogel surfaces: Interrelationship between microscopic structures and mechanical property of surface regions and cell adhesiveness, Biomaterials, 26, 3105-3111, 2005.
  27. T. Matsuda*, I. K. Kwon, and S. Kidoaki, Photocurable biodegradable liquid copolymer: synthesis of acrylate-endcapped trimethylene carbonate-based prepolymers, photocuring and hydrolysis, Biomacromolecues, 5, 295-305, 2004.
  28. S. Kato, S. Kidoaki, and T. Matsuda*, Substrate-dependent cellular behaviors of swiss 3T3 fibroblasts and activation of Rho family during adhesional and spreading processes, J. Biomed. Mater. Res., 68, 314-324, 2004.
  29. T. Matsuda*, J. Nagase, A. Gouda, Y. Hirano, S. Kidoaki, and Y. Nakayama, Phosphorylcholine-endcapped oligomer and block co-oligomer and surface biological reactivity, Biomaterials, 24, 4517-4527, 2003.
  30. Y. Nakayama, A. Furumoto, S. Kidoaki and T. Matsuda*, Photocontrol of cell adhesion and proliferation by a photoinduced cationic polymer surface, Photochem. Photobiol., 77 (5), 480-486, 2003.


  1. T. Okuda, Y. Tahara, N. Kamiya, M. Goto, and S. Kidoaki*, S/O-nanodispersion electrospun fiber mesh effective for sustained release of healthy plasmid DNA with the structural and functional Integrity, Journal of Biomaterials Science: Polymer Edition, 24, 1277-1290, 2013.
  2. T. Okuda and S. Kidoaki*, Multidrug delivery systems with single formulation ~current status and future perspective~, Journal of Biomaterials and Nanobiotechnology, 3, 50-60, 2012.
  3. T. Okuda and S. Kidoaki*, Development of time-programmed, dual-release system using multilayered fiber mesh sheet by sequential electrospinning, Journal of Robotics and Mechatronics, 22 (5), 4457-4465, 2010.
  4. T. Okuda, K Tominaga, and S. Kidoaki*, Time-programmed dual release formulation by multi-layered drug-loaded nanofiber meshes, J. Control. Release, 143 (2), 258-264, 2010.
  5. S. Kidoaki, I.K. Kwon, and T. Matsuda*, Structural feature and mechanical property of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents, J. Biomed. Mater. Res. B, 76, 219-229, 2006.
  6. A. Takahara*, M. Hadano, T. Yamaguchi, H. Otsuka, S. Kidoaki, and T. Matsuda, Characterization of novel bio-degradable segmented polyurethanes prepared from amino-acid based diisocyanate, Macromolecular Symp, 224, 207-217., 2005.
  7. T. Matsuda*, M. Ihara, H. Inoguchi, I.K. Kwon, K. Takamizawa, and S. Kidoaki, Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane mesh fabrics, J. Biomed. Mater. Res. A, 73, 125-131., 2005.
  8. I. K. Kwon, S. Kidoaki, and T. Matsuda*, Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential, Biomaterials, 26 (18), 3929-3939, 2005.
  9. S. Kidoaki, I.K. Kwon, and T. Matsuda*, Mesoscopic spatial designs of nano- and micron-fiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials, 26 (1), 37-46., 2005.
  10. T. Yamaguchi, H. Otsuka, S. Kidoaki, T. Matsuda, and A. Takahara*, Physicochemical properties and bio-degradation of segmented polyurethane and poly(urethane-urea) derived from lysine-based diisocyanate, Trans. Mater. Res. Soc. Japan, 29 (6), 2873-2876, 2004.


  1. A. Sakai, N. Hiro-oka, S. Sasaki, S. Kidoaki, and M. Yanagisawa.* Lipid membrane effect on the elasticity of gelatin microgel prepared inside lipid microdroplets, Journal of the Society of Rheology, Japan,47, 55-59, 2019.
  2. A. Sakai, Y. Murayama, K. Fujiwara, T. Fujisawa, S. Sasaki, S. Kidoaki, M. Yanagisawa.* Increasing elasticity through changes in the secondary structure of gelatin by gelation in a microsized lipid space, ACS Central Science,4, 477-483, 2018.
  3. K. Tamada*, E. Usukura, Y. Yanase, A. Ishijima, T. Kuboki, S. Kidoaki, K. Okamoto. LSPR-mediated high axial-resolution fluorescence imaging on a silver nanoparticle sheet, PLOS One,,12(12), e0189708, 2017.
  4. S. Masuda, Y. Yanase, E. Usukura, S. Ryuzaki, P. Wang, K. Okamoto, T. Kuboki, S. Kidoaki, and K. Tamada*, High-Resolution Imaging of a Cell-Attached Nanointerface Using a Gold-Nanoparticle Two-Dimensional Sheet, Scientific Reports,7,3720, 2017.
  5. T. Kurimura*, Y. Takenaka, S. Kidoaki and M. Ichikawa*, Fabrication of Gold Microwires by Drying Gold Nanorods Suspensions, Adv. Mater. Interf.,,,1601125, 2017.
  6. Y. Matsuda*, K. Takatsuji, Y. Shiokawa, M. Kikuchi, S. Kidoaki, A. Takahara, S. Tasaka, Characterization of Complexes Formed by Mixing Aqueous Solutions of Poly(2-Ethyl-2-Oxazoline) and Poly(Methacrylic Acid) with a Wide Range of Concentrations, Polymer,54, 1896-1904, 2013.
  7. S. Shibano, K. Sasaki, S. Kidoaki, T. Iwaki*, Detection of Prion Protein Oligomers by Single Molecule Fluorescence Imaging, Neuropathology, 33, 1-6, 2013.
  8. N. Sonda, M. Hirano, N. Shimada, A. Kano, S. Kidoaki, A.Maruyama*, Cationic Comb-type Copolymers Do Not Cause Collapse but Shrinkage of DNA Molecules, Chem. Lett., 40, 250-251, 2011.
  9. T. Nakagaki, A. Harano, Y. Fuchigami, E. Tanaka, S. Kidoaki, T. Okuda, T. Iwanaga, K. Goto, T. Shinmyuzu*, Formation of Nanoporous Fibers by the Self-Assembly of Pyromellitic Diimide-Based Macrocycle, Ang. Chem. Int. Ed., 45, 1-5, 2010.
  10. N. Chen, A. Zinchenko, S. Kidoaki, S. Murata, K. Yoshikawa*, Thermo-Switching of Genomic DNA Conformation in Solutions of PNIPAM, Langmuir, 26, 2995-2998, 2010.
  11. F. Ito, K. Usui, D. Kawahara, A. Suenaga, T. Maki, S. Kidoaki, H. Suzuki, M. Taiji, M. Itoh, Y. Hayashizaki, T. Matsuda*, Reversible hydrogel formation driven by protein–peptide–specific interaction and chondrocyte entrapment, Biomaterials, 31, 58-66, 2010.
  12. K. Usui, T. Maki, F. Ito, A. Suenaga, S. Kidoaki, M. Itoh, M. Taiji, T. Matsuda, Y. Hayashizaki, and H. Suzuki*., Nanoscale elongating control of the self-assembled protein filament with the cystein-introduced building blocks, Protein Sci., 18,960-969, 2009.
  13. M. Hirano, N. Shimada, A. Kano, S. Kidoaki, A. Maruyama*, Analysis of cationic comb-type copolymers/DNA interaction by the single molecular observation and intermolecular force measurement, Nucleic Acids Symp. Ser., 19,61-74, 2008.
  14. T. Maki, S. Kidoaki*, K. Usui, H. Suzuki, M. Ito, Y. Hayashizaki, and T. Matsuda, Dynamic force spectroscopy of specific interaction between PDZ-domain and its recognition peptides, Langmuir, 23, 2668-2673, 2007.
  15. A. Idiris, S. Kidoaki, K. Usui, T. Maki, H. Suzuki, M. Ito, M. Aoki, Y. Hayashizaki, and T. Matsuda*, Force measurement on antigen-antibody interaction by atomic force microscopy using photograft-polymer spacer, Biomacromolecules, 6, 2776-2784., 2005.
  16. K. Usui, S. Katayama, M. Kanamori, C. Kai, M. Okada, J. Kawai, T. Arakawa, P. Carninci, K. Takio, M. Miyano, S. Kidoaki, T. Matsuda, Y. Hayashizaki, and H. Suzuki*., Protein-protein interactions of the hyperthermophilic archaeon Pyrococcus horikoshii OT3, Genome Biology, 6, R98, 2005.
  17. T. Iwataki, S. Kidoaki, T. Sakaue, K. Yoshikawa*, and S. S. Abramuchuk, Competition between compaction of single chains and bundling of multiple chains in giant DNA molecules, J. Chem. Phys., 120, 4004−4011, 2004.
  18. T. Okuda, S. Kidoaki, M. Ohsakia, Y. Koyama, K. Yoshikawa, T. Niidome, H. Aoyagi*, Time-dependent complex formation of dendritic poly(L-lysine)s with plasmid DNA and correlation with in vitro transfection efficiencies, Org. Biomol. Chem., 1, 1270-1273, 2003.
  19. S. G. Starodoubtsev, S.Kidoaki, and K.Yoshikawa*, Interaction of double-stranded T4 DNA with cationic gel of poly(diallyldimethylammonium chloride), Biomacromolecules, 4, 32-37, 2003.
  20. S. Kidoaki and T. Matsuda*, Mechanistic aspects of protein/material interaction probed by AFM, Colloids & Surfaces B: Biointerfaces, 23, 153-163, 2002.
  21. N. Yoshinaga, K. Yoshikawa*, and S. Kidoaki, Multi-scaling in a long semi-flexible polymer chain in 2D, J. Chem. Phys., 116, 9926-9929, 2002.
  22. S. Kidoaki, S. Ohya, Y. Nakayama, and T. Matsuda*, Thermo-responsive property of N-isopropylacrylmide graft-polymerized surfaces measured with an atomic force microscope, Langmuir, 17, 2402-2407, 2001.
  23. S. Kidoaki, Y. Nakayama, and T. Matsuda*, Measuerment of interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in an aqueous media, Langmuir, 17, 1080-1087, 2001.
  24. T. Iwataki, Y. Yoshikawa*, S. Kidoaki, D. Umeno, M. Kiji, and M. Maeda, Cooperativity vs. phase transition in a giant single DNA molecules, J. Am. Chem. Soc, 122, 9891-9896, 2000.
  25. S. Kidoaki and T. Matsuda*, Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope, Langmuir, 15, 7639-7646, 1999.
  26. S. Kidoaki* and K. Yoshikawa, Folding and unfolding of a giant duplex-DNA in a mixed solution with polycations, polyanions, and crowding neutral polymers, Biophys. Chem., 76, 133-143, 1999.
  27. D. Umeno, M. Maeda*, S. Kidoaki, and K. Yoshikawa, Temperature-directed compaction of single DNA molecule grafted with poly(N-isopropylacrylamide), Nucleic Acids Res. Symp. Ser.,39, 175-176, 1998.
  28. N. Emi*, S. Kidoaki, K. Yoshikawa and H. Saito, Gene delivery mediated by polyarginine requires a formation of big carrier-complex of DNA aggregate, Biochem. Biophys. Res. Commun., 231, 421-424., 1997.
  29. V. V. Vasilevskaya*, A. R. Khokhlov, S. Kidoaki and K. Yoshikawa, Structure of collapsed persistent macromolecule: toroid vs. spherical globule, Biopolymers, 41, 51-60., 1997.
  30. S. Kidoaki and K. Yoshikawa*, Controlling the folding transition of giant DNA: cooperative effect between neutral polymer and basic polypeptide, Nucleic Acids Res. Symp. Ser., 35, 115-116, 1996.
  31. H. Noguchi, S. Saito, S. Kidoaki and K. Yoshikawa, Self organized nanostructure constructed with a single polymer chain., Chem. Phys. Lett., 261, 527-533, 1996.
  32. K. Yoshikawa*, S. Kidoaki, M. Takahashi, V. V. Vasilevskaya and A. R. Khokhlov, Marked discreteness on the coil-globule transition of single duplex-DNA, Ber. Bunsen-Ges. Phys. Chem.,100, 876-880., 1996.
  33. S. Kidoaki and K. Yoshikawa*, The folded state of long duplex-DNA chain reflects its solution history, Biophys. J., 71, 932-939, 1996.
  34. T. Imae* and S. Kidoaki, Solution properties of fibrous chains constructed of amphiphilic molecules, J. Jpn. Oil Chem. Soc. (YUKAGAKU), 44, 301-308., 1995.
  35. S. Kidoaki and K. Yoshikawa*, The multistability observed on the condensed structure of DNA/cationic polypeptide complex, Nucleic Acids Res. Symp. Ser., 31, 183-184, 1994.


  1. 木戸秋 悟, “間葉系幹細胞の分化偏向抑制培養ー培養力学場記憶の蓄積回避技術ー” 生体の科学, 70, 306-311, 2019.
  2. 木戸秋 悟, “微視的弾性勾配場設計による細胞運動操作” 生物物理, 57, 135-139, 2017.
  3. 木戸秋 悟, “細胞接着界面のソフトメカニクス設計による細胞メカノバイオロジーの操作” 膜 (MEMBRANE), 42, 78-83, 2017.
  4. 木戸秋 悟, “細胞操作メカノバイオマテリアルの設計と幹細胞操作材料への応用” Clinical Calcium, 医薬ジャーナル社, 26, 123-128, 2016.
  5. 木戸秋 悟, “メカノバイオマテリアル” 医学のあゆみ, 医歯薬出版, 257, 1119-1123, 2016.
  6. 木戸秋 悟, “細胞操作メカノバイオマテリアル” バイオマテリアル -生体材料- , 34, 112-119, 2016.
  7. 木戸秋 悟, “メカノバイオマテリアル:細胞のメカノバイオロジーを操作する材料” 日本機械学会誌, 117, 32-36, 2014.
  8. 木戸秋 悟, “メカノバイオマテリアル:細胞のメカノバイオロジーを操作する材料力学場設計” 高分子, 60, 302-305, 2011.
  9. 木戸秋 悟, “細胞運動・機能を操作する微視的培養力学場設計” 表面科学, 31, 307-312, 2010.
  10. 木戸秋 悟, “細胞操作弾性界面:微視的材料力学場設計による細胞機能制御” バイオマテリアル -生体材料- , 27, 136-144, 2009.
  11. 木戸秋 悟, “生体材料力学場設計による細胞機能のベクトル制御” 日本化学会生体関連化学部会NewsLetter , 20, 10-13, 2008.
  12. 木戸秋 悟、松田 武久, “ナノ・マイクロファイバーメッシュテクノロジー:電界紡糸法の生体材料設計への応用” 成形加工 , 19, 753-759, 2007.
  13. 木戸秋 悟、牧 禎、松田 武久, “生体分子相互作用のエネルギーランドスケープ解析” 高分子 , 56, 844, 2007.
  14. 木戸秋 悟、吉川 研一, “長鎖DNAの構造をみる(蛍光顕微鏡)” 高分子 , 46, 252-254, 1997.
  15. 木戸秋 悟、吉川 研一, “巨大DNAの分子内相転移〜自己排除鎖と凝縮鎖” 生物物理 , 194, 160-163, 1994.


  1. 木戸秋 悟, “メカノバイオミメティックスによる細胞操作工学” 『CSJ Current Review 28:持続可能性社会を拓くバイオミメティックス』(第13章)、化学同人, 2018(分担執筆).
  2. 木戸秋 悟, “メカノバイオマテリアル” 別冊・医学のあゆみ, 「メカノバイオロジーからメカノメディシンへ」(編集:曽我部正博)医歯薬出版,153-157, 2017.
  3. 木戸秋 悟 “基材硬さと細胞の関係” 『細胞培養の基礎知識と細胞培養基材の利用・開発の留意点』(第9章第3節)、情報機構, 2016(分担執筆).
  4. 木戸秋 悟 “幹細胞分化をコントロールする力学場” 下村 正嗣 編著『トコトンやさしいバイオミメティックスの本』(第4章42)、日刊工業新聞社, 2016(分担執筆).
  5. 木戸秋 悟、小林 剛 “再生医工学におけるメカノバイオロジーII:創傷治癒/基質硬度検知/基質工学” 曽我部 正博 編集『メカノバイオロジー:細胞が力を感じ応答する仕組み』(第22章)、化学同人, 2015(分担執筆).
  6. S.Kidoaki “Mechanobio-materials: Design of elastically-micropatterned hydrogels to manipulate cell mechanotaxis and motility-coupled functions” “Recent Advances in Mechanobiology”, The Shanghai Scientific and Technological Literature Publishing House,194-198, 2012(分担執筆).
  7. 木戸秋 悟 “細胞の挙動を操作する微視的培養力学場の設計” 石原一彦、塙隆夫、前田瑞夫編集『バイオマテリアルの基礎』(第4章3)、日本医学館, 2010(分担執筆).
  8. 木戸秋 悟 “微視的材料力学場設計による細胞機能のベクトル操作” 秋吉一成、岸田昌夫監修『次世代医療のための高分子材料工学』(第4章3)、シーエムシー出版 , 2008(分担執筆).
  9. 木戸秋 悟 “バイオ分析と診断のためのカンチレバーアレイセンサー”, “剪断力制御走査型イオン伝導顕微鏡” 丸山厚監訳『ナノバイオテクノロジー〜未来を拓く概念と応用〜』(第10章)(第11章)、NTS , 2008(分担翻訳).
  10. 木戸秋 悟, 幹細胞の新しい操作技術”-液性因子vs.固相因子 化学(化学同人) , 63(9), 72-73, 2008.
  11. 木戸秋 悟・松田 武久 “電界紡糸法による組織工学用細胞外マトリックス・骨格・デバイスの開発” 本宮達也監修『”ファイバー” スーパーバイオミメティックスー近未来テクノロジー』(第2章3節8)、NTS , 2006(分担執筆).
  12. 木戸秋 悟 “PEGによるDNA折り畳みの理論”, “DNAとカチオンの相互作用II:巨大DNAのコンフォメーション・アッセイによる解析” 吉川研一監修『DNAの折り畳み〜高次構造と機能』(第2章5節)(第4章), アイピーシー, 2003(分担執筆).
  13. 木戸秋 悟, 英語での文章表現を身につけるー英語論文を書くために 化学(化学同人) , 52(4), 15-16, 1997.


  • 九州大学
  • 九州大学 先導物質科学研究所
  • 九州大学 工学研究院応用科学部門分子教室
  • 九州大学 伊都新キャンパス