Seminar

Wednesday, Jan. 30^{th} , 2008 (Building A, 111 Central, $16^{00} - 17^{00}$)

Functionalized Cucurbiturils and Their Applications

Prof. Dr. Kimoon Kim

National Creative Research Initiative Center for Smart Supramolecules and Department of Chemistry, Pohang University of Science and Technology San 31 Hyojadong, Pohang 790-784, Republic of Korea kkim@postech.ac.kr

Cucurbit[n]uril (CB[n], n = 5 - 10),¹ a new family of host molecules comprising n glycoluril units, have a hydrophobic cavity and two identical carbonyl-laced portals, which allow them to form stable inclusion complexes with a wide variety of guest molecules. For example, CB[7] forms very stable host-guest complexes with ferrocenemethyl-ammonium (FA) ions in water with a binding constant up to 10^{15} M^{-1.2} It is one of the highest binding affinity ever observed in synthetic receptors and quite close to that of the biotin-avidin pair $(10^{13} - 10^{15})$. Our recent discovery of a direct functionalization method of CB[n] allowed us to synthesis a wide variety of tailor-made CB[n] derivatives and explore new applications of the host family.³ For example, lipophilic alkylated CB[n] (n = 5, 6) behaves as an ion channel when embedded in a lipid bilayer. Amphiphilic CB[6] derivatives form vesicles whose surface can be easily modified by host-guest interactions, which may be useful in targeted drug delivery. We recently synthesized polymer nanocapsules via polymerization of allyloxyCB[6] which has a rigid core and multiple polymerizable allyl groups at the periphery.⁴ Without needs for any pre-organized structures or templates, and core-removal the reaction directly produces polymer nanocapsules with a stable structure and narrow size distribution. The polymer shell made of host molecules allows tailoring of the surface properties by host-guest interactions. The easy synthesis and unique ability to tailor surface properties in a noncovalent manner make the polymer capsules and vesicles potentially useful in many applications including targeted drug delivery. We also reported a novel noncovalent method to immobilize a protein on a solid surface using the CB[7]–FA pair, which may serve as a replacement of the avidin-biotin system for this and other applications.⁵ Some of our recent work will be presented.

References

- 1. Reviews: (a) J. W. Lee et al. Acc. Chem. Res. 2003, 36, 621, (b) K. Kim, Chem. Soc. Rev. 2002, 31, 96, (c) L. Isaacs et al, Angew. Chem. Int. Ed. 2005, 44, 4844.
- (a) W. S. Jeon et al. J. Am. Chem. Soc. 2005, 127, 12984, (b) M. V. Rekarsky et al. PNAS, 2007, 104, 20737.
- 3. K. Kim et al. Chem. Soc. Rev. 2007, 36, 267.
- 4. D. Kim et al. Angew. Chem. Int. Ed. 2007, 46, 3471.
- 5. I. Hwang et al. J. Am. Chem. Soc. 2007, 129, 4170.

(Thies Thiemann, room A-413, 583-7812/7814; thies@cm.kyushu-u.ac.jp)