1 M C E 2023

Institute for Materials Chemistry and Engineering, Kyushu University

Greeting

Since its inception 20 years ago, the Institute for Materials Chemistry and Engineering (IMCE) at Kyushu University has been committed to producing world-class research results in the interdisciplinary field of materials chemistry. While continually strengthening our fundamental research capabilities, we consistently aim to fulfill our crucial mission: to respond to the diverse and evolving needs of society with state-of-the-art scientific and technological prowess. As outlined in our 4th Mid-term Plan, which began in 2022, the overall objective of the institute is to contribute to the development of interdisciplinary fields in materials science and chemistry, and to establish research bases that lead internationally. Specifically, our missions include:

- 1. Conducting research that ranges from the fundamental to the applied, all the way to societal implementation, while bolstering and fostering collaborations with both domestic and international research institutions.
- 2. Contributing to the achievement of a decarbonized society through innovations in materials chemistry and by extending our research capabilities into fields such as energy, environment, and life sciences.
- 3. Promoting advanced, interdisciplinary collaborative research in the field of materials and devices as a cooperative research base.

The Institute comprises four research departments: Fundamental Organic Chemistry, Applied Molecular Chemistry, Integrated Materials, and Advanced Device Materials. These departments focus on various aspects of materials chemistry, including molecules, molecular and atomic assemblies, nanomaterials, and advanced device materials. Since 2015, we have strategically advanced international collaborative research and bolstered our international capacities by establishing the Division of Soft Materials. Our institute is an active participant in the MEXT's 'Network Joint Research Center for Materials and Devices'. We maintain close collaborations with institutions such as RIES (Hokkaido University), IMRAM (Tohoku University), CLS (Tokyo Institute of Technology), and SANKEN (Osaka University). This collaboration has allowed us to establish a comprehensive network across Japan, annually conducting over 400 joint research projects. Researchers from universities and research institutions nationwide are encouraged to participate in joint research initiatives at our bases.

In order to ensure the continued scientific and technological prowess, industrial strength, and international competitiveness of Japan, it is crucial to nurture the next generation of young researchers who will advance fundamental research. We cooperate closely with several faculties, including the Graduate School of Engineering, the Graduate School of Science, the Interdisciplinary Graduate School of Engineering Sciences, and the Graduate School of Integrated Frontier Sciences. Together, we provide interdisciplinary research guidance in graduate education, leveraging the unique characteristics of the institute. Our goal is to foster the development of human resources, enabling young researchers to fully exhibit their abilities based on their own innovative ideas. Our attractive research organization and cutting-edge research environment are ready and eager to welcome many undergraduates, graduate students, and young researchers to the Institute for Materials Chemistry and Engineering.

Directer

Shiyoshi YOKOYAMA

Organization

The institute consists of five divisions and one center.

Campus

The Institute conducts research on two campuses.

Chikushi Campus

Inter-university Research Project

The institute is participating in the following projects and promoting collaborative research.

Network Joint Research Center for Materials and Devices

We are carrying out a joint research project with the RIES of Hokkaido University, the IMRAM of Tohoku University, the LCS of Tokyo Institute of Technology and the ISIR of Osaka University to promote research on materials and devices.

Crossover Alliance to Create the Future with People, Intelligence and Materials

We are promoting a joint research among five research institutes of NJRC. Researchers are divided into four groups, and we are promoting collaborative research that spans across fields and institutes.

Integrated Research Consortium on Chemical Sciences

We are collaborating with the ICAT of Hokkaido University, the RCMS of Nagoya University, the IRCELS of Kyoto University to promote research in chemical sciences and aim to establish a world-class research hub.

Division of Fundamental Organic Chemistry

* Special Project

Nanomaterials and Interfaces

Our group is studying about the interfacial phenomena between metals, metal oxides, semiconductors and soft materials in nanoscale. Our research target is not only to investigate new physicochemical phenomena on cutting edge of interdisciplinary field of science, but also to develop the new concept for future green and bio-technologies. Our topics include (1) Collective plasmon excitation on 2D crystalline sheets composed of Au and Ag nanoparticles, (2) High sensitive biosensor and high resolution bioimaging by use of localized surface plasmons, (3) Surface plasmon enhanced optoelectric devices such as LED and photovoltaic cells.

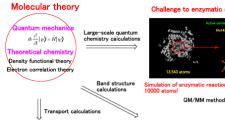
Assistant Professor Yuto KAJINO

Assistant Professor

Shi Ting LEE

Assistant Professor

Yosuke SUMIYA Research Assistant Professor Tajiji NAKAMURA


^{Professor} Kaoru TAMADA

Associate Professor Yusuke ARIMA

Theoretical Chemistry

Our research group uses quantum mechanics to look at the electronic properties and reactivity of molecules and molecular assemblies. We are interested in a detailed understanding of structure-function relationships in a wide range of subjects in chemistry, material science, and biochemistry. The creation of new concepts and findings based on quantum chemistry is our main interest.

Ito

Interfacial desig

Surface functionalization of

artificial materials and living

Nanopore Device

Shape analysis

analysis

Surface molecule

Ito

atic study

Ena.

cells to control biological

responses

Interfacial Reaction between Nanomaterials 2D and 3D Self-assembly of Molecules and Particles

* * * *

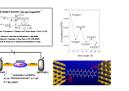
* * *

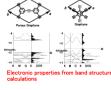
Ag Nanoparticle 2D Crystalline Sheet

High-resolution imaging

using a gold-nanoparticle sheet

Observation of cell-attached nano-interface (~ 10 nm)


Electromagnetically induced transparency


2D Ag Nanoparticle sheets

which cannot be observed

by conventional TIRF

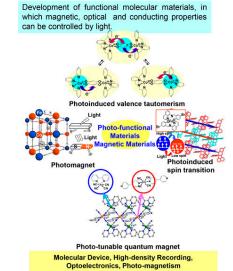
Sci.

Ito

Sci

Associate Professor

A reversible tuning and a persistent modification of physical properties by external stimuli are one of the main challenges in materials science. Especially, photo-control over the physical properties is important from the viewpoint of the practical application as well as the basic science. The photo-tunable compounds can be used future memory devices, optical switches and so on. Along this line, we are currently studying photo-tunable molecular magnets, valence tautomeric compounds, spin-crossover complexes and photonic crystals.



Professo

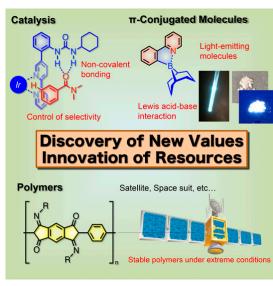
Professor Osamu SATO Assistant Professor Shinji KANEGAWA

Assistant Professor Shu-Qi WU

Assistant Professor Shengqun SU ^{**}

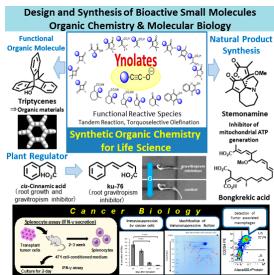
※ Special Project

Chemistry of Functional Molecules


We create novel transition metal catalysts which can realize high activity and selectivity, and develop highly efficient and practical synthetic organic reactions, such as C-H transformations. We also create high-performance organic functional materials, such $as\sigma$ -conjugated molecules and polymers. We aim to solve energy and environmental problems through these projects. (1) Creation of high-performance catalysts (2) Development of novel and practical synthetic organic reactions, such as C-H bond transformations (3) Creation of novel organic functional materials

Assistant Professor Kohei SEKINE

Assistant Professor


Takayuki IWATA

Professor Yoichiro KUNINOBU

Advanced Organic Synthesis

Our research group designs and synthesizes useful bioactive organic molecules based on synthetic organic chemistry, and develops novel and effective synthetic methods. Recent studies: (1) synthesis of apoptosis inhibitors, antitumor agents, and plant growth regulators; (2) new synthetic methods using ynolates; (3) synthesis of functional iptycenes; (4) molecular release reactions; (5) elucidation of the cancer-induced immunosuppression; (6) generation of anticancer reagents based on the novel mechanistic insights.

^{Professor} Mitsuru SHINDO

Associate Professor Arihiro KANO

Eng.

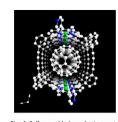
Eng.

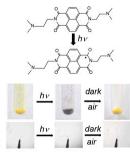
Sci

5

Chikushi

Chemistry of Molecular Assembly


Synthes is and function of supramolecular structures: molecular tubes, capsules, photo-swichable chiral hosts. Construction of bi-stable molecular aggregates via cooperative hydrogen bonding: Exploration of their nonlinear phenomena. Organic synthesis via photochemical reactions. Synthesis and properties of new cyclophanes and their application to molecular wires. Synthesis, structure, and function of thermoresponsive triblock polymers.


Osynthesis and function of supramolecular structures.

OPhotoinduced electron transfer and high charge mobility in porphyrin-fullerene supramolecules.

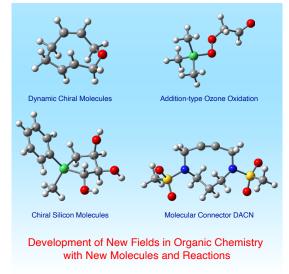
 $OSynthesis and photoelectronic properties of novel polycyclic <math display="inline">\pi-\text{electronic}$ compounds.

OPhotomechanical effect and photochemical reaction of aromatic diimides.

Ito

Sci

Fig . 1. Self-assembled porphyrin nanotube including linear array of fullerene $\mathrm{C}_{60}.$


Fig. 2. Color change and crystal bending of naphthalene diimide upon photo-irradiation

supramolecular assembly, π -electronic systems, porphyrins, fullerenes, photoinduced electron transfer, aromatic diimides, photomechanical effect,

System of Functional Molecules

Three-dimensional molecular design is important for creation of novel molecular functionality. We are focusing on the design of unique chiral molecules and the construction of novel chiral architecture based on these. Our recent works are (1) asymmetric synthesis of chiral organosilicon compounds and creation of novel chiral material based on this, (2) Creation of planar chiral heterocylic compounds and development of novel chiral-technology based on this.

Associate Professo

Fumito TANI

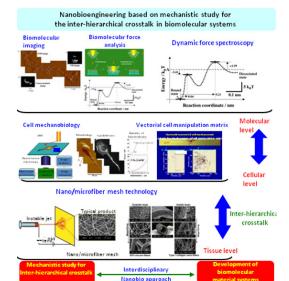
Professor Katsuhiko Tomooka

Assistant Professor Yuya KAWASAKI

Assistant Professor Thasaneeya KUBOKI

Assistant Professo

Kenta GOTO


Assistant Professor Tatsuya MORI [※]

% Cross Appointment Special Project

Biomedical and Biophysical Chemistry

Our lab works for the development of high-functional biomaterials/biomolecular systems such as cell manipulation matrices and molecular recognition devices. To effectively design such the systems, deep understandings for the biophysical principles on various aspects of the biosystems are required. We are trying to elucidate the interhierarchical crosstalk mechanisms in the biosystems, and to apply those to develop the novel nanobiotechnology.

Professor Satoru KIDOAKI

Associate Professo Hirohiko ISE

Hybrid Molecular Assemblies

We have tried to make nano-structure controlled brand-new polymer materials with various high properties and functionals based on polymer chemistry, which includes polymer synthesis, elucidation of structure-properties relationship. Followings are some examples. (1) In situ structure analysis under external stimuli of crystalline and amorphous polymers, and elastomers using synchrotron X-ray scattering/diffraction measurement, birefringence measurement, and infrared spectroscopy, (2) mechanical and fatigue properties of single lap-joints of adhesive, (3) preparation of toughened polymers, (4) quantitative evaluation of heterogeneous structure of elastomers based on complex network science.

Associate Professor Ken KOJIO

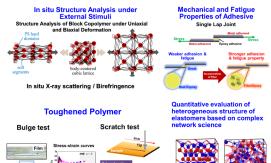
Theoretical Molecular Science

Conformational dynamics and fluctuations are essential for molecules to react and function in condensed phase. As molecular understanding of these motions are difficult to reach via experiments, our lab use computer simulations and theoretical analyses to study chemical reactions and conformational transitions of molecules in solution. The goal is to elucidate the molecular mechanisms that lead to functions of biomolecules and macromolecules. We also develop theoretical approaches to reveal the hierarchy of events that occur in condensed phase.

Associate Professor Toshifumi MORI

Inorganic Materials Chemistry

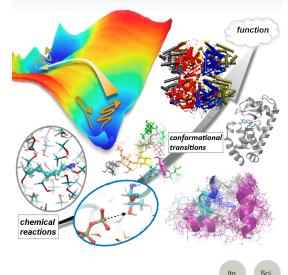
Our group are developing new functional chemicals and materials that take advantage of the characteristics of various elements. In particular, we are developing the nanoscale materials which exhibit high functionality in physical properties such as energy/chemical conversion (catalysis), energy storage (hydrogen storage), and mass transport (ion/atom diffusion, quantum diffusion) to build a sustainable chemical process that saves energy and resources.


Miho YAMAUCHI

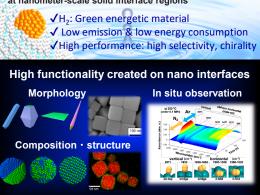
Assistant Professor Masaki DONOSHITA

Assistant Professor Kyohei KAWASHIMA *

* Special Project



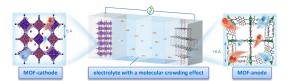
lto



Elucidating chemical reactions and conformational transitions that lead to "functions" via computer simulation and theory

New functions created by advanced use of interfacial dynamics of energy & chemicals

Enhancement in coupling of chemical and clean energy at nanometer-scale solid interface regions



with **Division**

Our research interests center on the application of biologically inherited system to energy storage. Life has selected specific elements including sodium, potassium and chlorine as a charge carrier to maintain homeostasis and adapt to environmental stress by adjusting its membrane potential. We are currently studying physicochemical properties of novel aqueous as well as solid electrolyte composed of these privileged elements and biomolecules. Our ultimate goal is to develop a robust and easier-torecycle secondary battery, which may contribute to the promotion of distributed energy resources.

MOLECULAR CROWDING AND ENERGY STORAGE

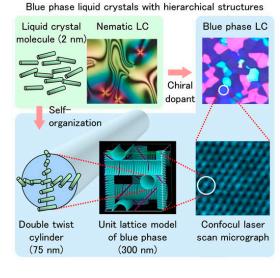
Chikush

Associate Professo Masato ITO

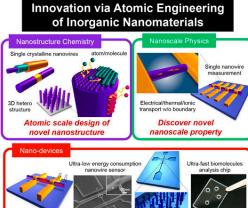
Division of Integrated Materials

Design of Nano-systems

Molecular self-assembly, which is an interdisciplinary subject extending over chemistry, physics and biology, derives the spontaneous nano-ordering being able to contribute much to key technologies of the bottom-up type electric and photonic devices. The focus of our studies is creating novel soft-matter with unique photonic structures and functionality through chemical and physical programming of topological frustration for the molecular assembling geometry of liquid crystals and polymers. We have developed novel functional materials showing fast electro-optics and photocontrollable photonic band.


Professor

Hirotsugu KIKUCHI


Associate Professor Yasushi OKUMURA

Research Assistant Professor Hiroyuki MATSUKIZONO

Nanostructured Integrated Materials

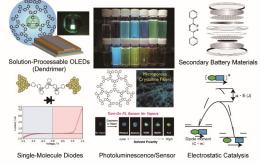
Our laboratory aims to 1) synthesize novel nanostructured materials, 2) explore the novel nanoscale physical properties using single nanoscale object device, and 3) develop these novel materials for real industrial applications.

se novel nano-devices for Green & Life Innovation

Takeshi YANAGIDA *

% Cross Appointment

Nano Lett. 15, 6406 (2015). Sci. Rep. 5, 10584 (2014), JACS 136, 14100 (2014). Sci. Rep. 4, 5943 (2014), Sci. Rep. 4, 5525 (2014), Adv. Mater. 25, 5893 (2013), JACS 135, 7033 (2013), ACS Nano 7, 3029 (2013), Sci. Rep. 3, 1657 (2013), Nanc Lt. 12, 5884 (2012), JACS 143, 2535 (2012)



Heterogeneous Integrated Materials

Our laboratory aims to synthesize new materials based on synthetic organic chemistry, polymer chemistry, and electro-chemistry. In particular we are developing 1) solution-processable organic-electronics materials for OLED application, and 2) cathode materials for next-generation secondary batteries.

Johnny Chung Yin HO * Sen Po YIP

Organic Chemisrty Electronic- Photonic- Chemistry

Associate Professor Ken ALBRECHT


Kohei NAKAO * Special Project

Assistant Professor

Eng Sci

Exploring new

Visualizing material functionality and

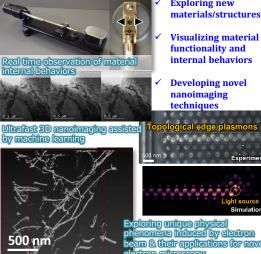
a ind by electron am & their applications for novel

Focus on developing and utilizing advanced transmission electron microscopy, socalled "in-situ nanoimaging" to visualize investigate how materials response to external stimuli, i.e., heat, light, stress; such findings provide direct proof of underlying-

mechanisms behind complex phenomena, and enhance understanding of macroscale properties. Real-time nanoimaging demands hundreds or thousands of times faster data acquisition methods than conventional TEM imaging, which motivates us to strive novel methodology developments such as machine-learning-assisted image denoising for ultrafast 3D nanoimaging. Our unique imaging capabilities/expertise will unveil various physical/chemical phenomena at the nanoscale.

Nanoscale Characterization of Materials

Professo

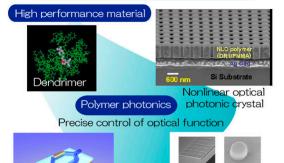


Associate Professor Mitsuhiro MURAYAMA *

* Cross Appointment

Hikaru SAITO

Assistant Professor Shiro IHARA



Division of Advanced Device Materials

Nano Scale Evaluation

Our research project is focused on creation of organic and polymer photonic materials and devices based on molecular building blocks and nano-micro-scale device fabrications. Research interest is in the demonstrating the potential of highperformance polymer materials for revolutionary components and devices. These include polymer photonic crystal devices leading to a large reduction in operating energies.

Polymer photonic devices

Ultrafast optical modulator Nanoscale polymer devices

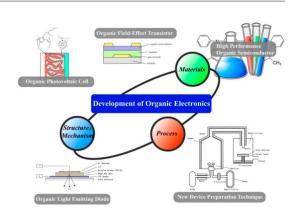
Optical ICT, Sensing, Energy conservation

Eng.

Sci

Eng

Sci.



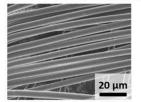
Assistant Professor (Dual Post) Akihiko TAKADA

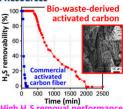
Professo Shiyoshi YOKOYAMA

Photonic Materials

This research section has been pioneering the R&D of organic electronics including organic electroluminescence (EL) devices, organic solar cells, organic transistors and organic memories. The R&D activity is divided to three groups, device structure, high performance materials and fabrication processes to understand comprehensive organic electronics. Organic semiconductors have significant advantages, ex. flexibility and printability. Utilizing the advantages, new classes of electronic devices are being developed.

Associate Professor Katsuhiko FUJITA


Carbon Materials Science


We develop new functional carbon materials for effective usages of energy resources and study their industrial applications. For example, we fabricate carbon nano-fibers (CNFs) having different shape, size, and surface properties, and optimize them for applications such as FC, LIB, and capacitor. We have found remarkably improved performance and durability for systems using our newly developed carbon materials, and have presented many patents and scientific papers. We are actively collaborating with various companies, and working on commercialization of our products.

Production of High-functional Carbon Materials Based on New Structural Unit Model

Development of High-performance Carbon Materials from Low Rank Resources

Time (min) High H₂S re (more than 15 times)

Seong Ho YOON

Professor

Associate Professor Jin MIYAWAKI

Assistant Professor Koji NAKABAYASHI

High-strength carbon fiber prepared from naphtha-cracked oil

Eng

Chikushi

Energy Storage Materials

Energy conversion devices using electrochemical reactions, such as batteries, have become indispensable in present society. Not only high performance but also sustainable development is required, and new device corresponding to it is necessary. Our aim is to develop such new battery materials and battery systems from the standpoint of material chemistry and electrochemistry. Currently, our main research fields are; (1) Development of new materials for cation-shuttle batteries: sulfur-based positive electrode materials, Li, Na conductive solid electrolyte (2) Development of new anion-shuttle batteries and materials: fluoride/chloride ion shuttle batteries

Assistant Professor Atsushi INOISHI

- Fe, F, Cl, S, Na...

Chikush

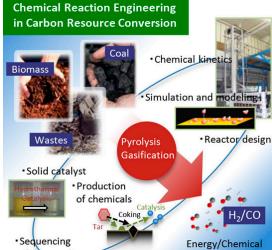
Platform

Sci

Hikari SAKAEBE

Microprocess Control

Main purpose: development of thermochemical reaction systems for converting carbon resources such as coal, biomass and wastes into H_a/CO that is to be the common energy/material platform in future sustainable carbon cycle chemistry (SC3) systems. Current topics: detailed chemical kinetic analysis and modeling, sequencing of parallel/consecutive thermo-chemical reactions of coal and biomass, conversion of heavy oil and tar in nano/sub-nano spaces, radi-cal-driven rapid gasification of carbonized solids, pre-cise control of chemical vapor infiltration processes.


Professor Jun-ichiro HAYASHI

Shinji KUDO

Syusaku ASANO

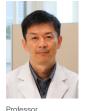
Assistant Professor

 Sequencing of thermochemical reactions

Division of Soft Materials

Soft Materials Chemistry

In order to attain the high "quality of life (QOL)"in aged society, the breakthrough in the research field of biomaterials (bio-compatible materials) is required. Our research aim to clarify the origin of bio-compatibility based on the role of hydrated water on bio/ material interfaces, and to develop novel biomaterials with extremely high bio-compatibility, selective control of cell behavior.


Design of Highly Functionalized Bio-Compatible Materials based on Hydration Structure Control at Bio-Interfaces

Ito

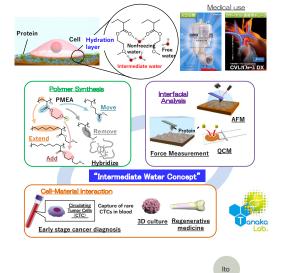
Ito

Ito

Eng.

Masaru TANAKA

Nano-Bio Device


Takahisa ANADA

Assistant Professor Iksung CHO Reseach Associate Professor

Shingo KOBAYASHI

Associate Professor Junjie LI ^{**}

Assistant Professor Shohei SHIOMOTO ** * Special Project

Professor (Dual Post) Kaoru TAMADA

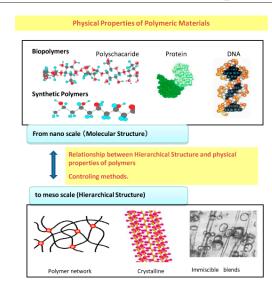
Associate Professor (Dual Post) Yusuke ARIMA

Mechanobio-materials

Professor (Dual Post) Satoru KIDOAKI

Assistant Professor (Dual Post) Thasaneeya KUBOKI

Soft Interface Chemistry


Evaluation Center of Materials Properties and Function

Evaluation Office of Materials Properties and Function

Assistant Professor

Akihiko TAKADA

Hierachical structures and physical properties of polymers as well as those of analogous soft matters are studied by microscopic observations, thermal analysis, rheological and scattering experiments. Solution Properties of natural polymers in ionic liquids is also studied in our group.

Office of Research Support

The laboratory supports the activities of the Institute, including the Network Joint Research Center for Materials and Devices, manages and operates the large shared equipment of the Institute, and manages the environment and safety of the Institute. Each staff member has a high level of knowledge about the instruments and analytical methods they are in charge of, and provides analytical support to researchers and students inside and outside the institute, including instruction on measurement methods and education on analytical methods, as well as actively responding to technical consultations and contract analysis of advanced measurements from inside and outside the institute.

> Senior Technician Mitsutaka UMEDU

Senior Technician Keiko IDETA

Senior Technician Taisuke MATSUMOTO

Senior Technician

Takeshi TANAKA Technician

Kanako IMAMURA

Chikushi

Chikushi

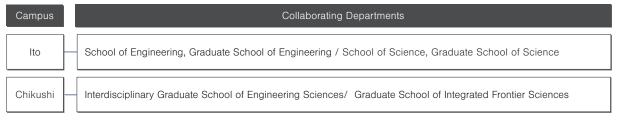
Shared Instruments

The institute is promoting the sharing of large equipment owned by the institute through collaborative research and joint usage programs. Evaluation Office of Materials Properties and Function operates and manages the equipment, and actively responds to inquiries and commissioned analyses from both internal and external researchers and companies.

- 1. Solid and liquid nuclear magnetic resonance
- 2. Solid nuclear magnetic resonance
- 3. Transmission electron microscope
- 4. Single crystal X-ray structure analysis
- 5. X-ray diffractometer
- 6. Small angle X-ray scattering
- 7. Scanning electron microscope
- 8. Double focusing mass spectrometry
- Matrix assisted laser desorption ionization time of flight mass spectrometry Others

· Electron spin resonance

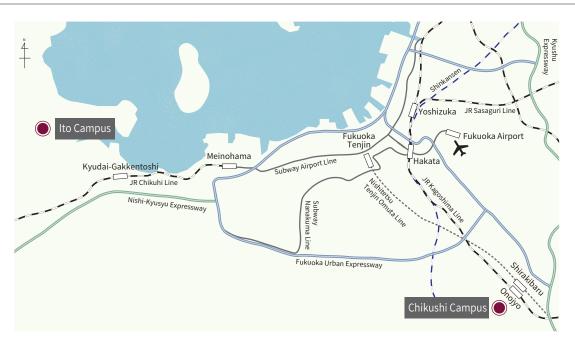
Cold spray ionization mass spectrometry etc.



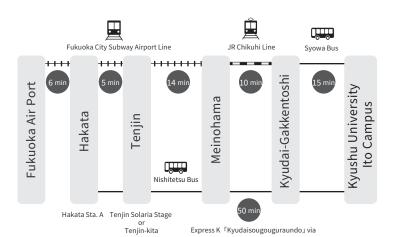
Affiliate Subdivisions

Each research field is affiliated with one of the academic departments or graduate schools. Undergraduate and master's/doctoral students conduct their research in one of the following departments or graduate schools, respectively.

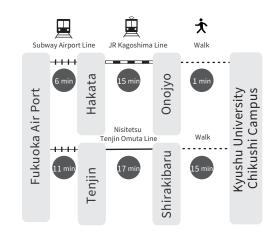
Eng


Sci

% Collaborators are listed on each research department/field introduction page.


School of Engineering, Graduate School of Engineering: Eng.

School of Science, Graduate School of Science: Sci.


Interdisciplinary Graduate School of Engineering Sciences:

Ito Campus

Chikushi Campus

Institute for Materials Chemistry and Engineering, Kyushu University

 Chikushi Campus
 6-1 Kasuga koen, Kasuga-shi, Fukuoka 816-8580, Japan
 TEL&FAX +81-92-583-7839

 Ito Campus
 744 Motooka, Nishi-ku, Fukuoka 819-0935, Japan
 TEL +81-92-802-2500
 FAX +81-92-802-2501

https://en.cm.kyushu-u.ac.jp

April 1, 2023